Comparisons of

ACE-FTS and MLS v4.2

atmospheric profiles and drift analysis

Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Jiansheng Zou, Lucien Froidevaux

ACE-FTS

Atmospheric Chemistry Experiment – Fourier Transform Spectrometer

- Canadian satellite SciSat was launched into a circular, highinclination orbit in August 2003
 - ACE-FTS and MAESTRO instruments on board
- ACE-FTS is a solar occultation instrument
 - High spectral resolution FTS in the 2.2 to 13.3 µm spectral range
 - 30+ trace species are retrieved, as well as 20+ subsidiary isotopologues
 - Vertical resolution of 3-4 km
- ACE-FTS level 2 version 3.5 data were used in this study
 - Complete dataset currently spans 2004-2013
 - Data set supplemented with Jan-Apr 2016 data (not yet released)
- Species in common with MLS
 - 0₃, H₂O, N₂O, HCI, HNO₃, CO, HCN, CH₃CI, CH₃OH

Coincidence criteria with MLS

Chose coincidence criteria

of within ±6 h, ±500 km

hours

10

10

hours

12

Drift analysis

- All coincidences from 2004-2013 and 2016
- Monthly means of relative differences (ACE-FTS MLS)
- Take linear fit, 99.9% confidence in slope as error bounds
- Calculate linear fit correlation

- Breakpoint analysis
 - Vary breakpoint between 2005 and 2012
 - Calculate slope and correlation for data before and after breakpoint
 - Calculate overall correlation with and without breakpoint
 - If correlation is significantly greater with breakpoint, then there's a valid breakpoint!
 - SPOILER ALERT: no valid breakpoints were found. 🕾

- ACE-FTS O₃ has a known high bias
 - ~2% in stratosphere
 - ~10-20% in lower mesosphere
- Drift is close to significant in the 20-30 km region, ~ -0.13±0.08 ppmv/decade

ACE-FTS O₃ vs ozonesondes

From Hubert et al., AMT, 2016

- Typically better than -5%/dec
- Only 2004-2010 data used

- Typically –3%/dec
- 2004-2013 + 2016

03

H_2O

- ACE-FTS has dry bias in stratosphere above the hygropause
- Negative drift near 25-40 km ~0.2±0.1 ppmv/decade

H_2O

N_2O

N_2O

- Agree within ±3% below 26 km; ACE-FTS is ~10% smaller near 28-35 km
- Positive drift of ~5 ppbv/decade near 23 km

 N_2O

- No significant drift is found when comparing ACE-FTS and MLS v3 N₂O
 - v3 N₂0 uses the 640 GHz channel, v4 uses 190 GHz

HCI

- Typically agree within ±5%
- In upper stratosphere, MLS HCI (band 14) is known to not be of "trend quality"

HCI band 13

 Rate of change at 4 latitude bands using coincident points between ACE-FTS v3.5 and MLS v4.2 (no coincident points for 2009 and 2010 in tropics) derived from data with annual cycle removed

No significant driff

- For CO summer months (Jun-Aug in NH; Dec-Jan in SH) have been excluded
 - MLS summer CO tends to be much noisier

No significant drif

Conclusions

- Just reporting the amount of drift in comparison with MLS v4.2
 - No definitive explanations yet for the existence of drifts
- A match made in the heavens
 - Just like any good long term relationship, ACE-FTS and MLS are, for the most part, in sync; but in certain areas they're drifting apart
- No significant drift found in HNO₃, CO, HCN, CH₃CI
- Significant drift found in:
 - O₃ negative drift on order of 2-3%/dec near 20-30 km likely an ACE issue
 - H₂O negative drift on order of 2-4%/dec near 20-45 km possibly an MLS issue
 - N₂O positive drift on order of 4%/dec near 23 km likely an MLS 190-GHz issue

Thanks!

The extra bits

HCI

